The world’s first look at Apple’s final iPhone 8 design in real life



The Worlds First Look At Apples Final IPhone 8

Apple’s upcoming new iPhone 8 is the most hotly anticipated smartphone since 2014, when news first began to leak that the company would finally release larger iPhones. The iPhone 6 and iPhone 6 Plus featured the bigger displays users had been clamoring for, and they also sported a sleek new design that Apple fans loved. But now, three years later, Apple’s flagship iPhones still feature a design that is practically identical to the company’s 2014 models. The iPhone 7 and iPhone 7 Plus pack plenty of power and new features, but smartphone fans have clearly grown tired of Apple’s 2014 iPhone design, and sales are slumping as a result.

iPhone 8
iPhone 8

The world is long overdue for a fresh new iPhone design, and Apple fans will finally get what they want in 2017 when Apple unveils its completely redesigned iPhone 8. Now, for the first time ever, consumers will get their first look at Apple’s reimagined iPhone 8 design in real life.

his coming September, Apple is expected to unveil three new iPhone models. The iPhone 7s and iPhone 7s Plus are believed to be modest updates to the current iPhone 7 and 7 Plus. For the first time, however, Apple is expected to make a significant change to an “S” update’s hardware by making the back of the phones glass instead of aluminum. Both new models are expected to support wireless charging, and present technology is unable to pass current as efficiently through metal as it does through glass.

Apple’s new iPhone 7s and iPhone 7s Plus will surely be impressive smartphones, but the device everyone is waiting for is the iPhone 8. According to multiple independent reports, the iPhone 8 will feature a bold new design that sandwiches a stainless steel frame between two 2.5D glass panels. The result will supposedly appear seamless, bringing Apple closer than ever to realizing Jony Ive’s dream of an iPhone made of one continuous sheet of glass.

The face of the iPhone 8 is expected to feature a new OLED display with a screen-to-body ratio even more impressive than the 83% ratio managed by Samsung’s Galaxy S8 and Galaxy S8+. This will reportedly be achieved in part by shifting around the device’s internal components, but also by completely removing the iPhone’s physical home button.

Here is where reports begin to diverge. We know that Apple has been working for years on technology that will allow it to embed a TouchID fingerprint scanner directly into an iPhone’s display, and several reports have said the iPhone 8 will be the first iPhone to feature an embedded fingerprint sensor. But conflicting reports suggest that the required tech isn’t yet mature enough to mass-produce at the scale Apple would require for the iPhone 8, so the company may be forced to move the scanner to the back of the handset, as was the case for Samsung and its Galaxy S8.

Everyone hates the iPhone 8 design that has floated around with a fingerprint scanner on the back of the phone, so we can only hope that Apple and its manufacturing partners found a way to make the embedded scanner work. The bad news is we cannot confirm one way or the other at this time. But the good news is Apple’s iPhone 8 design has seemingly been finalized, and we’re giving the world an exclusive first look at the hotly anticipated tenth-anniversary iPhone.

BGR has exclusively obtained photos of an iPhone 8 mockup that is believed to feature Apple’s final design. As has been the case in years past, this mockup is thought to have been built using actual finalized schematics that were leaked from the factories that will build Apple’s next-generation iPhones.

iPhone 8
iPhone 8

The mock-up doesn’t feature any indication of a fingerprint scanner on the back of the phone, however not all markings are present on the dummy, so it’s not clear if this is an indication that the phone’s TouchID sensor will be embedded in the display.

iPhone 8
iPhone 8

These photos show an iPhone 8 design that is largely in line with recent rumors. The phone features 2.5D glass panels on the front and back that curve slightly at their edges. Sandwiched between them is a polished stainless steel midframe that is rounded as well, perfectly continuing the slope of the 2.5D glass. The result is a smooth design that will likely feel seamless in the hand.

iPhone 8
iPhone 8

On the back of the iPhone 8 mock-up, we can see an oversized “camera bump” positioned vertically rather than horizontally, as is the case on the iPhone 7 Plus. This area of the phone’s back is thought to house a new dual-lens camera system, as well as an LED flash and a microphone. Apple’s next-generation camera on the iPhone 8 is expected to feature the same optical zoom capability as the iPhone 7 Plus’ camera, but it may also enable exciting new augmented reality features that Apple will announce this coming September.

iPhone 8
iPhone 8

And just in case you’re wondering, no, the iPhone 8 will not have a 3.5mm headphone jack.

We have about four months to go before Apple finally takes the wraps off its tenth-anniversary iPhone, and there are still plenty of new details left to leak between now and then. In fact, we still don’t even know what the new handset will be called. While most people currently refer to the phone as the “iPhone 8,” that name has not been confirmed. Other possibilities that have been tossed around include “iPhone X” and “iPhone Edition,” which would align with the high-end Apple Watch Edition.

iPhone 8
iPhone 8

There is indeed much we still do not know, but the iPhone 8’s design now appears to be finalized. While BGR’s exclusive photos give the world its first look at this sleek new design, we can expect to see more iPhone 8 mockups begin to surface as third-party case makers like Ghostek and Spigen get a jump on building cases for Apple’s new iPhone so they’re ready at launch. As regular readers will recall, Ghostek was the first case maker to reveal Samsung’s Galaxy S8 design when renders of its upcoming cases were leaked earlier this year.

Apple’s iPhone 8 is expected to be unveiled this coming September, though its release may be pushed back to October or November if recent rumors of manufacturing difficulties end up being accurate.

Future Internet -The Internet of Things Architecture

Future Internet: The Internet of Things Architecture, Possible Applications, and Key Challenges

Abstract—The Internet is continuously changing and evolving. The main communication form of present Internet is human human. The Internet of Things (IoT) can be considered as the future evaluation of the Internet that realizes machine-to-machine (M2M) learning. Thus, IoT provides connectivity for everyone and everything. The IoT embeds some intelligence in Internet connected objects to communicate, exchange information, take decisions, invoke actions and provide amazing services. This paper addresses the existing development trends, the generic architecture of IoT, its distinguishing features and possible future applications. This paper also forecast the key challenges associated with the development of IoT. The IoT is getting increasing popularity for academia, industry as well as government that has the potential to bring significant personal, professional and economic benefits. Keywords-Internet of Things, ubiquitous computing, RFID, IoT architecture, IoT applications, IoT security. I. INTRODUCTION The Internet of Things (IoT) provides connectivity for anyone at any time and place to anything at any time and place. With the advancement in technology, we are moving towards a society, where everything and everyone will be connected [1]. The IoT is considered as the future evaluation of the Internet that realizes machine-to-machine (M2M) learning [2]. The basic idea of IoT is to allow autonomous and secure connection and exchange of data between real world devices and applications [3]. The IoT links real life and physical activities with the virtual world [4].

Telephone System Engineer

The numbers of Internet-connected devices are increasing at the rapid rate. These devices include personal computers, laptops, tablets, smart phones, PDAs and other hand-held embedded devices. Most of the mobile devices embed different sensors and actuators that can sense, perform computation, take intelligent decisions and transmit useful collected information over the Internet [5]. Using a network of such devices with different sensors can give birth to enormous amazing applications and services that can bring significant personal, professional and economic benefits [6]. The IoT consists of objects, sensor devices, communication infrastructure, computational and processing unit that may be placed on cloud, decision making and action invoking system [7]. The objects have certain unique features and are uniquely identifiable and accessible to the Internet. These physical objects are equipped with Radio-Frequency IDentification (RFID) tags or other identification bar-codes that can be sensed by the smart sensor devices [6]. The sensors communicate object specific information over the Internet to the computational and processing unit. A combination of different sensors can be used for the design of smart services. The result of processing is then passed to the decision making and action invoking system that determines an automated action to be invoked. This paper addresses the existing development trends, the generic architecture of IoT, IoT distinguishing features and possible future applications. The IoT is a hot research topic that is getting increasing popularity for academia, industry as well as government. Many European and American organizations and multinatinal companies are involved in the design and development of IoT to achieve different type of useful and powerful automated services [1]. The IoT has to face many challenges in its deployment specially in the field of security, governance and standardization that are also addressed in this paper. The rest of the paper is organized as follows. Section II describes briefly the evolution of Internet. Section III presents the generic architecture of IoT. Section IV forecasts possible future application of IoT. Section V describes key challenges in the design and implementation of IoT. Finally, Section VI concludes the paper. II. EVALUATION OF INTERNET OF THINGS The Internet has tremendously evolved in the last few years connecting billions of things globally. These things have different sizes, capabilities, processing and computational power and support different kind of applications [4]. Thus, the traditional Internet merges into smart future Internet, called IoT [1]. The generic scenario of IoT is shown in Fig. 1. The IoT connects real world objects and embeds the intelligence in the system to smartly process the object specific information and take useful autonomous decisions [2]. Thus, IoT can give birth to enormous useful applications and services that we never imagined before [1]. With the advancement in technology, the devices processing power and storage capabilities significantly increased while their sizes reduced. These smart devices are usually equipped with different type of sensors and actuators. Also these devices Internet Smart Farming Smart Transport Smart Postal Smart Health Smart Home Television Refrigerator Independent Living IP Phones Smart-phone PDA Tablet Notebook PC Figure 1: The IoT generic scenario. are able to connect and communicate over the Internet that can enable a new range of opportunities [3]. Moreover, the physical objects are increasingly equipped with RFID tags or other electronic bar codes that can be scanned by the smart devices, e.g., smart phones or small embedded RFID scanner. The objects have unique identity and their specific information are embedded in the RFID tags. In 2005, the International Telecommunications Union (ITU) proposed that “Internet of Things” will connect the real world objects in both a sensory and intelligent manner [8]. Fig. 2 shows basic IoT system implementing different type of applications or services. The things connect and communicate with other things that implement the same service type. The basic simplified work- flow of IoT can be described as follows: 1) Object sensing, identification and communication of object specific information. The information is the sensed data about temperature, orientation, motion, vibration, acceleration, humidity, chemical changes in the air etc depending on the type of sensors. A combination of different sensors can be used for the design of smart services. 2) Trigger an action. The received object information is processed by a smart device/system that then determines an automated action to be invoked. 3) The smart device/system provide rich services and includes a mechanism to provide feedback to the administrator about the current system status and the results of actions invoked. III. GENERIC ARCHITECTURE Today’s Internet is using TCP/IP protocol stack for communication between network hosts which was proposed long time ago. However, the IoT connects billions of objects which will create much larger traffic and much more data storage is needed [9]. Also, IoT will face many challenges specially related to privacy and security [10]. Thus, the new Service Type 1 RFID Tags Service Type 2 RFID Tags Sensors Physical Objects Communication Infrastructure/Network Computation and Processing System Decision Making and Action Invoking unit Figure 2: Basic IoT system. proposed architecture for IoT needs to address many factors like scalability, interoperability, reliability, QoS, etc. Since IoT connects everything and everyone to exchange information among themselves, the traffic and storages in the network will also increase in the exponential way. Thus, IoT development depends on the technology progress and design of various new applications and business models. The basic architecture of IoT is proposed in [9] and [11]. Generally, the structure of IoT is divided into five layers as shown in Fig. 3. These layers are briefly described below: 1) Perception Layer: The Perception layer is also known as ‘Device Layer’. It consists of the physical objects and sensor devices. The sensors can be RFID, 2D-barcode, or Infrared sensor depending upon objects identification method. This layer basically deals with the identification and collection of objects specific information by the sensor devices. Depending on the type of sensors, the information can be about location, temperature, orientation, motion, vibration, acceleration, humidity, chemical changes in the air etc. The collected information is then passed to Network layer for its secure transmission to the information processing system. 2) Network Layer: The Network layer can also be called ‘Transmission Layer’. This layer securely transfers the information from sensor devices to the information processing system. The transmission medium can be wired or wireless and technology can be 3G, UMTS, Wifi, Bluetooth, infrared, ZigBee, etc depending upon the sensor devices. Thus, the Network layer transfers the information from Perception layer to Middleware layer. 3) Middleware Layer: The devices over the IoT implement different type of services. Each device connects and communicates with only those other devices which implement the same service type. This layer is responsible for the service management and has link to the database. It receives the information from Network layer and store in the database. It performs information processing and ubiquitous computation and takes automatic decision based on the results. 4) Application Layer: This layer provides global manage- Business Layer Network Layer Application Layer Middleware Layer Perception Layer RFID, Barcode, Infrared Sensors Secure Transmission Info Processing Service Management Smart Applications and Management System Management Flowcharts Graphs Physical Objects 3G, UMTS, Wifi, Bluetooth, infrared, ZigBee, etc Ubiquitous Computing Decision Unit Database Business Models Figure 3: The IoT Architecture. ment of the application based on the objects information processed in the Middleware layer. The applications implemented by IoT can be smart health, smart farming, smart home, smart city, intelligent transportation, etc. 5) Business Layer: This layer is responsible for the management of overall IoT system including the applications and services. It builds business models, graphs, flowcharts etc based on the data received from Application layer. The real success of the IoT technology also depends on the good business models. Based on the analysis of results, this layer will help to determine the future actions and business strategies. IV. POSSIBLE FUTURE APPLICATIONS The IoT can find its applications in almost every aspect of our daily life. Below are some of the examples. 1) Prediction of natural disasters: The combination of sensors and their autonomous coordination and simulation will help to predict the occurrence of land-slides or other natural disasters and to take appropriate actions in advance. 2) Industry applications: The IoT can find applications in industry e.g., managing a fleet of cars for an organization. The IoT helps to monitor their environmental performance and process the data to determine and pick the one that need maintenance. 3) Water Scarcity monitoring: The IoT can help to detect the water scarcity at different places. The networks of sensors, tied together with the relevant simulation activities might not only monitor long term water interventions such as catchment area management, but may even be used to alert users of a stream, for instance, if an upstream event, such as the accidental release of sewage into the stream, might have dangerous implications. 4) Design of smart homes: The IoT can help in the design of smart homes e.g., energy consumption management, interaction with appliances, detecting emergencies, home safety and finding things easily, home security etc. 5) Medical applications: The IoT can also find applications in medical sector for saving lives or improving the quality of life e.g., monitoring health parameters, monitoring activities, support for independent living, monitoring medicines intake etc. 6) Agriculture application: A network of different sensors can sense data, perform data processing and inform the farmer through communication infrastructure e.g., mobile phone text message about the portion of land that need particular attention. This may include smart packaging of seeds, fertilizer and pest control mechanisms that respond to specific local conditions and indicate actions. Intelligent farming system will help agronomists to have better understanding of the plant growth models and to have efficient farming practices by having the knowledge of land conditions and climate variability. This will significantly increase the agricultural productivity by avoiding the inappropriate farming conditions. 7) Intelligent transport system design: The Intelligent transportation system will provide efficient transportation control and management using advanced technology of sensors, information and network. The intelligent transportation can have many interesting features such as non-stop electronic highway toll, mobile emergency command and scheduling, transportation law enforcement, vehicle rules violation monitoring, reducing environmental pollution, anti-theft system, avoiding traffic jams, reporting traffic incidents, smart beaconing, minimizing arrival delays etc 8) Design of smart cities: The IoT can help to design smart cities e.g., monitoring air quality, discovering emergency routes, efficient lighting up of the city, watering gardens etc. 9) Smart metering and monitoring: The IoT design for smart metering and monitoring will help to get accurate automated meter reading and issuance of invoice to the customers. The IoT can also be used to design such scheme for wind turbine maintenance and remote monitoring, gas, water as well as environmental metering and monitoring. 10) Smart Security: The IoT can also find applications in the field of security and surveillance e.g., surveillance of spaces, tracking of people and assets, infrastructure and equipment maintenance, alarming etc. The IoT is also getting increasing popularity for academia, industry as well as government. Many international organizations are involved in the development of IoT. Microsoft’s Eye-On-Earth platform creates an environment where water and air quality of a large number of European countries can be viewed, thus aiding in climate change research [8]. The European Commission is also involved in the research and development related to IoT. The Cluster of European Research Projects on the Internet of Things (CERP-IoT) is one of their active research project. The CERP-IoT look for IoT applications in societal, industrial and environmental domains [8]. The European FP7 project ‘The Internet of Things Architecture’ (IoT-A) focuses on the possible standard architecture for the IoT. Some other currently active European FP7 research projects that focus on the development of IoT includes IoT@Work, ‘The Internet of Things Initiative’ (IoTi) and ‘European Research Cluster on the Internet of Things’ (IERC). HP is also researching IoT based infrastructure in their Central Nervous System for the Earth initiative. Their aim is to populate the planet with billions of small sensors aimed at detecting vibrations and motion. The IoT applications will continuously evolve with the passage of time but it has also to face many challenges related to privacy, security, scale and complexity, sufficient spectrum for connecting huge number of tagged objects or sensors etc. Some of the key challenges are addressed in section V. V. KEY CHALLENGES The IoT can change the shape of the Internet and can offer enormous economic benefits but it also faces many key challenges [10], [12]. Some of them are briefly described below. 1) Naming and Identity Management: The IoT will connect billions of objects to provide innovative services. Each object/sensor needs to have a unique identity over the Internet. Thus, an efficient naming and identity management system is required that can dynamically assign and manage unique identity for such a large number of objects. 2) Interoperability and Standardization: Many manufacturers provide devices using their own technologies and services that may not be accessible by others. The standardization of IoT is very important to provide better interoperability for all objects and sensor devices. 3) Information Privacy: The IoT uses different kind of object identification technologies e.g., RFID, 2D-barcodes etc. Since, every kind of daily use objects will carry these identification tags and embed the object specific information, it is necessary to take proper privacy measures and prevent unauthorized access. 4) Objects safety and security: The IoT consists of a very large number of perception objects that spread over some geographic area, it is necessary to prevent the intruder’s access to the objects that may cause physical damage to them or may change their operation. 5) Data confidentiality and encryption: The sensor devices perform independent sensing or measurements and transfer data to the information processing unit over the transmission system. It is necessary that the sensor devices should have proper encryption mechanism to guarantee the data integrity at the information processing unit. The IoT service determines who can see the data, thus, it is necessary to guard the data from externals. 6) Network security: The data from sensor devices is sent over wired or wireless transmission network. The transmission system should be able to handle data from large number of sensor devices without causing any data loss due to network congestion, ensure proper security measures for the transmitted data and prevent it from external interference or monitoring. 7) Spectrum: The sensor devices will require dedicated spectrum to transmit data over the wireless medium. Due to limited spectrum availability, an efficient dynamic cognitive spectrum allocation mechanism is required to allow billions of sensors to communicate over the wireless medium. 8) Greening of IoT: The network energy consumption is increasing at very high rate due to increase in data rates, increase in the number of Internet-enabled services and rapid growth of Internet connected edge-devices. The future IoT will cause significant increase in the network energy consumption. Thus, green technologies need to be adopted to make the network devices as energy efficient as possible. VI. CONCLUSIONS This paper introduced the emerging future form of Internet called “Internet of Things” that will connect everything and everyone. The IoT embeds intelligence in the sensor devices to autonomously communicate, exchange information and take intelligent decisions. Simply, IoT transitions human-human communication to human-human, human-device and devicedevice communication. This paper described briefly the evaluation of Internet, proposed the generic structure for IoT, described possible future applications and some active international projects in the field of IoT and finally addressed some key challenges associated with the IoT technology. The IoT deployment could be hard and require large research efforts to tackle with the challenges but it can provide significant personal, professional and economic benefits in the near future. REFERENCES [1] J. Zheng, D. Simplot-Ryl, C. Bisdikian, and H. Mouftah, “The Internet of Things,” in IEEE Communications Magazine, Volume:49 , Issue: 11, pp:30-31, 2011. [2] Y. Huang and G. Li, “Descriptive Models for Internet of Things,” in IEEE International Conference on Intelligent Control and Information Processing (ICICIP), August 2010. [3] T. Fan and Y. Chen, “A Scheme of Data Management in the Internet of Things,” in 2nd IEEE International Conference on Network Infrastructure and Digital Content, Sept. 2010. [4] Y. Huang and G. Li, “A Semantic Analysis for Internet of Things,” in International Conference on Intelligent Computation Technology and Automation (ICICTA), May 2010. [5] Q. Zhou and J. Zhang, “Research Prospect of Internet of Things Geography,” in 19th International Conference on Geoinformatics, June 2011. [6] J. Li, Z. Huang, and X. Wang, “Countermeasure Research about Developing Internet of Things Economy,” in International Conference on E -Business and E -Government (ICEE), May 2011. [7] Y. Yu, J. Wang, and G. Zhou, “The Exploration in the Education of Professionals in Applied Internet of Things Engineering,” in 4th International Conference on Distance Learning and Education (ICDLE), October 2010. [8] L. Coetzee and J. Eksteen, “The Internet of Things: Promise for the Future? An Introduction,” in IST-Africa Conference Proceedings, CSIR, Pretoria, South Africa, May 2011. [9] L. Tan and N. Wang, “Future Internet: The Internet of Things,” in 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), August 2010. [10] G. Gang, L. Zeyong, and J. Jun, “Internet of Things Security Analysis,” in International Conference on Internet Technology and Applications (iTAP), August 2011. [11] M. Wu, T. Lu, F. Ling, J. Sun, and H. Du, “Research on the Architecture of Internet of Things,” in 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Aug. 2010. [12] Z. Hu, “The research of several key question of Internet of Things,” in International Conference on Intelligence Science and Information Engineering (ISIE), August 2011.

Telephone System Engineers


Telephone System Engineer Preston

Your Local Independent telephone engineers in Preston

Thank you for visiting Telephone System Pro

Your local Independent  Ex BT Telephone System Engineer Preston are offering All internal/external wiring repair and provision, telephone master socket/extension sockets for all BT and Cable telephone internal line faults and broadband problems.

PLEASE CALL: 0800 0132341 TODAY

MOBILE: 07860 244274

I can help you with fault finding and repair on any telephone line & broadband service provider (ISP).

Intruder alarms supplied and fitted.

Evening and weekend callouts.

Telephone System Engineer Preston will give you a free survey along with written estimate for any job that you contact me with.

    • Repairs for internal telephone faults/broadband faults.
    • Lines proved for internal or external faults.
    • Internal & external bells supplied & fitted.
    • New telephone line installation. Ethernet cable.
    • Data CAT5e Network Cabling & RJ45 Computer socket installation.
    • Underground telephone cable fitted from house to annex/workshop.
    • Underground cut telephone cable repair on your property.
    • BT and Cable lines.
    • Small business low-cost telephone systems ( mini PBX) supplied/fitted.
    • Intruder alarms supplied and fitted.
    • Professional service.
    • Quick response. weekend & evenings.

Where do you start the massive task of researching and purchasing a new telephone system for your business?

Many people start down the road or in their local town.  Maybe searching on the internet like you have.  But the time and effort it takes you to find the right system and then find the best prices for it are very great.  That time and energy could be used elsewhere for more results in your business or in your free time.  Let Telephone System Engineer Preston do all the hard work and running around for you.
Here at Telephone System Engineer Preston have the process of finding, comparing, and negotiating the lowest prices down to a science.  We are so good in fact that it takes us only 1 hour.  We have the suppliers on speed dial.  We know business systems like the back of our hand.
You will save money with our service guaranteed.  How do Telephone System Engineer Preston know that, well we have saved many many customers thousands and thousands on their purchases of new business telephone systems direct from suppliers and distributors?

Don’t over pay for the same telephones that we can find for you.

Business telephone system Preston have been on the rise as more and more organizations are becoming aware of the benefits accrued with these integrated communication solutions. As opposed to having the normal phone system, business telephone system allows you to enjoy different features and functions helping you add more control and ease of use than ever before. If you are thinking of using the business telephone system, there are some elements one has to consider.
Telephone System Engineer Preston

Elements of Considering Business Telephone System Preston

phone system
The first element to considering the actual product one is using. There may be a lot of different business systems to consider including some of the leading business telephone systems in the UK. These businesses can be tailored for any type of need or usage.
Whatever the business needs, you will always find business telephone systems that match your needs. A good example is a high call business center management or wireless and mobile phone systems. One can utilize high communication systems so that the emails and calls can and will be handled at one particular place, therefore, making one easily handle phone lines and extensions.

Telephone System Engineer Preston

Another element to consider is the services that a partner will be able to offer and assist you with. Such services include installation; integration and implementation to help your business get started. It’s complex and you need not worry yourself not forgetting time-consuming. However, some service providers can make the process easy, fast and painless allowing you to have control of other areas of your business.
Also, Telephone System Engineer Preston offer Maintenance and support are another elements to consider for your business telephone systems. One cannot simply install a business telephone system and then ignore it. Technology as we know it has to be updated and replaced constantly so that the business can stay ahead of the pack at all times so that you don’t fall behind and lose the competitive edge you have over other businesses. Having maintenance, repairs and upgrades will keep your business strong and without the worries of interruptions. One can also outsource support needs in order to save the business money over hiring more staff on a full-time basis.

Choosing The Right Telephone Business System

business telephone systemThe right telephone business system depends on the volume of calls one receives daily and the number of employees one has. Here are some of the business telephone systems that will suit you best.
PBX: This is regarded by most as the best suited for a modern office; the private branch exchange connects employees with an office allowing for calling direct desk extensions. A PBX system allows for a number of different outside phone lines which are shared by employees. There are other available applications such as PC and voicemail applications.
VoLP: These means using existing data lines for telephone calls and can also be referred as IP telephony. This concept is rapidly growing in workplaces and this is achieved by employees plugging handsets into a data point that can and is used instantly by the existing network. These phones use what is termed as “Voice over Internet Protocol” which delivers a clean and clear phone signal.
Key Systems Unit: This is an old system and uses key systems unit are desktop phones which are controlled by a row of buttons. A phone line is selected by employees by pressing a button thereby placing a caller on hold and allows them to take another call by pressing another button. Modern versions of KSU are also called “hybrids” in some trade publications thereby joining together some of the best old features of the old push button phones and the ever versatile PBX systems.
A good telephone system must be some essential features so that it adds value to your business.
telephone system engineer Preston

Features of a Good Business Telephone System

 The most imperative feature that a business telephone system must have is auto attendants. These systems allow the system to work as attendants or receptionist for the callers. They do this by taking calls automatically and then directing the callers to enter the right number to reach their desired destinations.
Another important feature Telephone System Engineer offer is the conference call features. This allows for more than two conferences to be carried out at the same time.
Another important feature that a business telephone system must have is automated directories integrated into them. This allows the caller to see the extension of the employee. The call forwarding and call holding feature are of importance when attendants are busy or dealing with other people on calls.
Music on hold is another feature that is also present in features. The music plays automatically when a caller is placed on hold when the attendant is busy attending other calls. Power back option is another important feature and provides energy to the system when there is a power outage.
It’s important to add that advanced features on the telephone systems will make you cough a little more money but these features are worth every feature. If you are planning to buy one, make sure that all the features have been installed.

Advantages of Business Telephone Systems

One should think of the phone system as an investment. The hardware itself can last up to several years and the software can be structured to grow and upgraded with your company’s growth depending on which system you have purchased.
The phone operating systems have a huge impact on your business since having a good system will improve the interaction between your employees and the customers a great deal.
Shopping for these telephone systems for your business may not be complicated the way people think. The internet will help clients in the UK to find the best telephone services for your use.
Finally, Telephone System Engineer Preston know the benefits accrued by having a sensible, stable and customer satisfactory business telephone system in place is that it not only supports the efficient running of the business but also improves cost effectiveness and overall productivity. A good example is a video conference involving several participants each from a different geographical area in place of the actual physical meeting saves effort, cost and most importantly time.
All said and done, you are guaranteed to save more money for your business and your employees will get more work done in less time turning the business to a well-oiled machine ready to capitalize on any opportunity thrown in its path. For more information speak to one of our Telephone System Engineers.

Are Business Telephone Systems Different from Normal Phones?

Advancements in telecommunication have allowed business owners to take advantage of expanding their reach on a local and global scale. Business owners are now finding it easier to get in touch with their customers or for their customers to get in touch with them via a PBX or a business telephone system. A normal phone on a business setting would have features like call waiting, caller ID, and call return just to name a few, but they can hardly do anything for the company. the fact that the normal phones run over copper wires is enough to make business owners quake at the sight of poor voice quality.
A business telephone system is made for businesses due to its features. Features that are available with these systems can include:  call conferencing, fax to email,  voicemail, automatic call distribution, email to fax,  create call queues, call forwarding, interoffice paging, custom-menus, auto attendant, music on hold, and much more. This allows better and efficient communications from different personnel in different departments or giving your customers more opportunities to get in touch with you. a normal telephone system can only go so far as add to your telephone bills without offering too many benefits.
Efficiency is also the key factor as to why business telephone systems or PBX are better than a normal phone because of the way they are networked. You can call another department within your office without having to get a separate subscription for them. Every system runs on one subscription and the infrastructure will allow you to distribute extensions to which you can get in touch with another party. Customers that dial your number that want to get in touch with a specific department can dial that department’s extension. International customers can also get in touch with you via your VOIP number, something that can be added to your system.

Contact Telephone System Engineer Preston Today by filling in the form

    Tel: 0800 0132341 now!!!

    Wiring provision for telephone extensions, disability helplines, alarms,  PDQ machines etc


    BOOK A BROADBAND SPEED TEST with one of our Engineers Here


    Areas Covered by Telephone System Engineer Preston

    City Centre, Avenham, Broadgate, Deepdale, Fishwick, St. Matthew’s, Penwortham, Ashton On Ribble, Brookfield, Cadley, Fulwood, Grimsargh, Haighton, Ingol, Larches, Lea, Ribbleton, Riversway, Sharoe Green, Tanterton, Barnacre-with-Bonds, Barton, Bilsborrow, Bonds, Bowgreave, Broughton, Cabus, Calder Vale, Chipping, Forton, Garstang, Goosnargh, Great Eccleston, Little Eccleston, Longridge, Myerscough, Oakenclough, Pilling, Ribchester, St Michael’s On Wyre, Scorton, Whittingham, Winmarleigh, Becconsall, Catforth, Clifton, Cottam, Eaves, Elswick, Freckleton, Hesketh Bank, Hutton, Inskip, Kirkham, Longton, Much Hoole, New Longton, Newton, Tarleton, Thistleton, Treales, Roseacre and Wharles, Walmer Bridge, Warton, Wesham, Woodplumpton, Wrea Green, Bamber Bridge, Coupe Green, Cuerdale, Cuerden, Gregson Lane, Higher Walton, Hoghton, Lostock Hall, Riley Green, Samlesbury, Walton-le-Dale, Walton Park, Walton Summit, Abbey Village, Adlington, Anderton, Anglezarke, Astley Village, Brindle, Brinscall, Clayton-le-Woods, Heapey, Heath Charnock, Wheelton, White Coppice, Whittle-le-Woods, Withnell, Adlington, Buckshaw Village, Charnock Richard, Coppull, Eccleston, Euxton, Heath Charnock, Heskin, Ainsdale, Birkdale, Blowick, Scarisbrick, Banks, Churchtown, Crossens, Marshside, Leyland, Clayton-le-Woods, Cuerden, Farington, Bretherton, Croston, Farington Moss, Moss Side, Ulnes Walton

    VOIP Telephone Systems Installation

    Local VOIP Telephone Systems Installation

    VOIP telephone systems, also known as IP telephone systems are becoming increasingly popular as an alternative to traditional digital telephone systems. Businesses should look at the pros and cons to ensure that the most effective system is in place for there business needs.

    There are several key differences and certainly, a number of advantages VOIP or IP telephone systems (Voice Over Internet Protocol) hold over the more traditional digital telephone systems.

    New VOIP Telephone Systems Installation

    Fundamentally the purpose of integrating VOIP telephony over the digital alternative is to increase flexibility and cut costs across the board whilst allowing staff to keep in contact wherever in the world they may be.

    Where the initial outlay on a state of the art VOIP telephone system may be slightly more than a traditional PBX (which means Private Branch Exchange) the advantages for the future are appealing to businesses more and more each day, and have kick-started the VOIP revolution of recent years.

    VOIP has also become popular with the use of applications like Skype and Google talk, however, these systems use a lot of bandwidth and not as effective as dedicated business systems.

    VOIP Telephone Systems Installation

    One of the key advantages of a VOIP telephone system is utilising the ability to link multiple sites associated to one business so that they can contact one another completely free of charge.

    This ensures unified communication throughout the business. An example of this would be the receptionist at head office speaking to another user on a site 100 miles away, this call would be free of charge as the sites are VOIP linked and would act as an internal call as if the two were in the same office using a traditional PBX, very appealing when thousands of minutes are used each day between large businesses on various sites across the UK are still being charged at standard pence per minute rates.

    Yet another key advantage which may be more appealing to small businesses when expanding into new premises is that VOIP allows you to ‘port’ your number anywhere. If you have printed letterheads, business cards with the number your company has been using for years, then move into a different area code, there used to be no way of taking that number with you.


      VOIP allows a user to port any number they owned at the old premises, and point this number to any line in the new premises. This can be managed in house and will enable the user to point the number at several different locations should they move to different areas, and can be an extremely useful disaster recovery tool, in the event of a fire or flood the company can instantly point the VOIP number to a disaster recovery siteHealth Fitness Articles, ensuring your business is still contactable.

      VOIP technology can also be used as a very effective way of allowing home workers to have full functionality of the IP telephone system whilst working remotely saving on office costs without compromise.

      Follow my blog with Bloglovin